martes, 17 de noviembre de 2015

Casos de Factorizacion

CASO DE FACTOR

 Sacar el factor común es añadir el lite común de un polinomiobinomio o trinomio, con el menor exponente y el divisor común de sus coeficientes. Tambien se puede describir como buscar el factor común entre los factores.

a^2+a b = a (a+b)
9a^2-12ab+15a^3b^2-24ab^3=3a(3a-4b+5a^2b^2-8b^3)

Factor común trinomio

Factor común por agrupación de términos
ab + ac + ad  =  a ( b + c + d) \,
ax + bx + ay + by  = a (x+y) + b (x+y) = (x+y)(a + b ) \, si y solo si el polinomio es 0 y el cuatrinomio nos da x.

Factor común polinomio

Primero hay que determinar el factor común de los coeficientes junto con el de las variables (la que tenga menor exponente). Se toma en cuenta aquí que el factor común no solo cuenta con un término, sino con dos.
Por ejemplo:
 5x^2(x-y) + 3x(x-y) +7(x-y) \,
Se aprecia claramente que se está repitiendo el polinomio (x-y), entonces ese será el factor común. El otro factor será simplemente lo que queda del polinomio original, es decir:
 (5x^2 + 3x +7) \,
La respuesta es:
 (5x^2+3x+7)(x-y) \,
En algunos casos se debe utilizar el número 1, por ejemplo:
 5a^2(3a+b) +3a +b \,
Se puede utilizar como:
 5a^2(3a+b) + 1(3a+b) \,
Entonces la respuesta es:
 (3a+b) (5a^2+1) \,




CASO II- DE TRINOMIO CUADRADO PERFECTO

Se identifica por tener tres términos, de los cuales dos tienen raíces cuadradas exactas, y el restante equivale al doble producto de las raíces del primero por el segundo. Para solucionar un trinomio cuadrado perfecto debemos reordenar los términos dejando de primero y de tercero los términos que tengan raíz cuadrada, luego extraemos la raíz cuadrada del primer y tercer término y los escribimos en un paréntesis, separándolos por el signo que acompaña al segundo término; al cerrar el paréntesis elevamos todo el binomio al cuadrado.
(a+b)^2 = a^2+2ab+b^2\,
(a-b)^2 = a^2-2ab+b^2\,
Ejemplo 1:
(5x-3y)^2 = 25x^2-30xy+9y^2\,
Ejemplo 2:
(3x+2y)^2 = 9x^2+12xy+4y^2\,
Ejemplo 3:
(x+y)^2 = x^2+2xy+y^2\,
Ejemplo 4:
4x^2+25y^2-20xy\,
Organizando los términos tenemos:
4x^2 - 20xy + 25y^2\,
Extrayendo la raíz cuadrada del primer y último término y agrupándolos en un paréntesis separados por el signo del segundo término y elevando al cuadrado nos queda:
(2x - 5y)^2\,
Al verificar que el doble producto del primero por el segundo término es -20xy determinamos que es correcta la solución. De no ser así, esta solución no aplicaría.

CASO III - DIFERENCIA DE CUADRADOS

Se identifica por tener dos términos elevados al cuadrado y unidos por el signo menos. Se resuelve por medio de dos paréntesis, (parecido a los productos de la forma (a-b)(a+b), uno negativo y otro positivo.
 (ay-bx)(ay+bx)=
(ay)^2-(bx)^2
\,
O en una forma más general para exponentes pares:

(ay)^{2n}-(bx)^{2m}=
((ay)^n-(bx)^m)((ay)^n+(bx)^m)\,
Y utilizando una productoria podemos definir una factorización para cualquier exponente, el resultado nos da r+1 factores.

(ay)^n-(bx)^m=
((ay)^{n/{2^r}}-(bx)^{m/{2^r}})\cdot \prod_{i=1}^{r} ((ay)^{n/{2^i}}+(bx)^{m/{2^i}})  
\,
Ejemplo 1:
9y^2-4x^2=
(3y)^2-(2x)^2=
(3y+2x)(3y-2x)\,
Ejemplo 2:
Supongamos cualquier r, r=2 para este ejemplo.

(2y)^6-(3x)^{12}=
((2y)^{6/2^2}-(3x)^{12/2^2})\cdot\prod_{i=1}^{2} ((2y)^{6/{2^i}}+(3x)^{12/{2^i}})=
\,

((2y)^{3/2^2}-(3x)^{12/2^2})\cdot((2y)^{3/2^2}+(3x)^{12/2^2})\cdot((2y)^{3/2}+(3x)^{12/2})=
\,

((2y)^{3/4}-(3x)^{3})\cdot((2y)^{3/4}+(3x)^{3})\cdot((2y)^{3/2}+(3x)^{6})
\,
La factorización de la diferencia o resta de cuadrados consiste en obtener las raíz cuadrada de cada término y representar estas como el producto de binomios conjugados.

CASO IV TRINOMIO DE LA FORMA  ax2 + bx + c

En este caso se tienen 3 términos: El primer término tiene un coeficiente distinto de uno, la letra del segundo término tiene la mitad del exponente del término anterior y el tercer término es un término independiente, o sea sin una parte literal, así:
 4x^2+12x+9\,
Para factorizar una expresión de esta forma, se multiplica la expresión por el coeficiente del primer término(4x2) :
 4x^2(4)+12x(4)+(9\cdot4)\
 4^2x^2+12x(4)+36\,
Luego debemos encontrar dos números que multiplicados entre sí den como resultado el término independiente y que su suma sea igual al coeficiente del término x :
 6\cdot6=36
 6+6=12\,
Después procedemos a colocar de forma

CASO V TRINOMIO DE LA FORMA x2 + bx + c

Se identifica por tener tres términos, hay una lateral con exponente al cuadrado y uno de ellos es el término independiente. Se resuelve por medio de dos paréntesis, en los cuales se colocan la raíz cuadrada de la variable, buscando dos números que multiplicados den como resultado el término independiente y sumados (pudiendo ser números negativos) den como resultado el término del medio.
Ejemplo:
a^2+2a-15 = (a+5) (a-3) \,
Ejemplo:
x^2+5x+6 = (x+3)(x+2)\,

CASO VI - SUMA DE CUBOS _______________________________________

a³ + b³ = (a + b) (a² - ab + b²)
Se resuelve de la siguiente manera
El binomio de la suma de las raíces de ambos términos (a + b)
El cuadrado del primer término, [ a² ]
[ - ] el producto de los 2 términos [ ab ]
[ + ] El cuadrado del segundo término; [ b² ]

CASO VII - DIFERENCIA DE CUBOS___________________________________

a³ - b³ = (a - b) (a² + ab + b²)
Se resuelve de la siguiente manera
El binomio de la resta de las raíces de ambos términos (a - b)
El cuadrado del 1er termino, [ a² ]
[ + ] el producto de los 2 términos [ ab ]
[ + ] el cuadrado del 2do termino; [ b² ]

No hay comentarios:

Publicar un comentario